LeetCode 918. Maximum Sum Circular Subarray

Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.

Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)

Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)

Example 1:

Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3

Example 2:

Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10

Example 3:

Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4

Example 4:

Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3

Example 5:

Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1

Note:

  1. -30000 <= A[i] <= 30000

  2. 1 <= A.length <= 30000

Solution

English Version in Youtube

中文版解答Youtube Link

中文版解答Bilibili Link

class Solution {
public:
    int maxSubarraySumCircular(vector<int>& A) {
        int sum = 0;
        int cur_max = 0;
        int max_so_far = INT_MIN;
        int cur_min = 0;
        int min_so_far = INT_MAX;
        
        for (int v : A) {
            cur_max = max(cur_max + v, v);
            max_so_far = max(max_so_far, cur_max);
            cur_min = min(cur_min + v, v);
            min_so_far = min(min_so_far, cur_min);
            
            sum += v;
        }
        
        if (max_so_far <= 0) return max_so_far;
        return max(max_so_far, sum - min_so_far);
    }
};

Last updated