LeetCode 300. Longest Increasing Subsequence
Dynamic Programming | Binary Search
Given an integer array nums
, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7]
is a subsequence of the array [0,3,1,6,2,2,7]
.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up:
Could you come up with the
O(n2)
solution?Could you improve it to
O(n log(n))
time complexity?
Solution:
Solution 1: DP
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n);
int ans = 0;
for (int i = 0; i < n; i++) {
int tmp = 1;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
tmp = max(tmp, dp[j]+1);
}
}
ans = max(ans, tmp);
dp[i] = tmp;
}
return ans;
}
};
Time Complexity: O(n^2)
Space Complexity: O(n)
Solution 2: Binary Search with DP
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> optimal_structure;
for (int num : nums) {
auto it = std::lower_bound(optimal_structure.begin(), optimal_structure.end(), num);
if (it != optimal_structure.end()) {
*it = num;
} else {
optimal_structure.push_back(num);
}
}
return optimal_structure.size();
}
};
Time Complexity: O(nlog(n))
Space Complexity: O(n)
PreviousLeetcode 297. Serialize and Deserialize Binary TreeNextLeetCode 301. Remove Invalid Parentheses
Last updated
Was this helpful?